dWsS
~—

Build data-driven
applications using
AWS databases

/

Contents

Key characteristics of data-driven applications 4

Making best-fit database choices......................... 5
Advantages of a microservices architecture 6
Automated capacity changes

with serverlessdatabases. oL 8
Vertical scaling and horizontal scaling...................... 9
Casestudy: BMW e 10
Datapartitioning e 11
Addingnodestoacluster............ ... o i, 12
Casestudy:DraftKings i, 13
Adding nodes to a cluster with sharding 14
Casestudy: Careemoiiiii ittt 15
In-memory benefits of low-latency,

high-throughput dataaccess.............. 16
Maintaining operational stability. 17
Securityand compliance. ...l i 18
High availability 19
Blue/green deployments, 20

Meeting users where they are

with multi-Region deployments......................... 21
Multi-Regionreadreplicas, 22
Active-active multi-Region databases

with eventual consistencyo, 22

Active-active multi-Region databases
with strong consistency i, 24

Contents

Performing analytics and search

on operational data with zero-ETL....................... 26
Thechallengeswith ETL. ..., 27
AWS zero-ETL integrations 28
Unlocking vector search

for generative Al applications 30
Adding domain-specific data using databases 32
Retrieval Augmented Generation

to enhance contextualrelevance................. 33
Knowledge bases for Amazon Bedrock 34
Storing vectors and operational data together 35
Bridging Kubernetes workloads to AWS databases. 37
Migratingyourdatato AWS. 40
Case study: S&P Dow Jones Indices 42

ConcluSioN ...t e 43

Key characteristics of data-driven applications

As organizations look to increase the pace of innovation and build new customer experiences, modernizing how you build
and operate data-driven applications is key. From applications that are integral to the daily lives of customers to enterprise
software that controls back office operations, applications are the driving force behind every successful organization.

Data-driven applications require technologies that enable organizations to innovate faster and improve performance,
security, and reliability while lowering their total cost of ownership. These technologies include:

e Cloud infrastructure: Offload undifferentiated management tasks, access continuous innovation, scale efficiently,
and reduce costs with pay-as-you-go pricing to enable faster time to value and unlock competitive advantages

o Security, identity, and compliance: Build with the highest standards using encryption, automated threat detection,
and real-time compliance monitoring for safe, authorized access, and secure infrastructure management

e Low-code and no-code technologies: Use drag-and-drop interfaces, pre-built components, and tools to
empower teams to compose, assemble, and integrate applications without deep coding expertise

e Microservices-based architecture: Enable faster development with loosely coupled services to
support incremental releases, team autonomy, deeper functionality, and faster time to market

o DevOps automation: Accelerate software delivery with practices like continuous integration and deployment
to reduce production deployment times from months to hours while providing high-quality software

« Multi-Region operations with local performance: Scale automatically to millions of users and petabytes of data to
provide near real-time response, dynamic scaling, and automated failure recovery for always-available applications

o« Embedded machine learning and artificial intelligence (Al): Deliver insights through features like personalized
recommendations and enhanced security to improve customer engagement without requiring machine learning expertise

Applications are the largest producers and consumers of data, and databases power applications. As such,

we will discuss how AWS Databases deliver on the aforementioned technologies as a foundational component in the
data-driven application technology stack. Selecting the right database(s) for your data infrastructure is critical as the
architecture decisions made today are an investment for the next decade. The right database choices can create new and
engaging customer experiences, process transactions faster, and spur innovation. This paper explains how AWS databases
provide a high-performance, secure, and reliable foundation to power generative Al solutions and data-driven applications
at any scale.

dWs

U 4

https://aws.amazon.com/products/databases/

01 Making best-fit
database choices

aWs
>

Making best-fit database choices

With fully managed databases, your operational burden is significantly

Fully managed services on AWS reduced. Daily database management tasks can take up an inordinate
amount of time spent on undifferentiated heavy lifting. AWS managed
Spend time innovating & building apps, databases handle all the fundamental database instance operations—like
not managing infrastructure provisioning, high availability and durability, patching, upgrades, setup,

configuration, automated backups, and failover. Also, AWS continuously
monitors your clusters to keep your workloads up and running with self-
healing storage and automated scaling, so that developers and database
operators can focus on higher value tasks, like new features, schema
design, query optimization, and access control.

Self managed vs. Fully managed
@ vou AwWs B

Schema design
tructi i i i
Query construction Advantages of a microservices architecture

Query optimization
Today's applications use a microservices-based architecture as it provides

many advantages—such as increased agility, scalability, and flexibility—
focused on faster innovation and reduced dependencies. Microservices
teams work autonomously and are empowered to make their own
technology choices, including the choice of database. For this approach
to prevail, each team of microservices developers and DevOps
professionals needs a rich set of database choices.

Automatic failover

Backup & recovery

Isolation & security
Industry compliance

Push-button scaling
While relational databases are still essential—in fact, they are still

growing—a relational-only approach no longer works for today'’s
database workloads. With the rapid growth of data—in volume, velocity,
variety, complexity, and interconnections—database requirements have
changed. Many new applications that have social, mobile, Internet of
Things (loT), and global access requirements are unable to scale using a
central relational database alone. This has led to the use of purpose-built
databases designed to handle specific data models.

Automated patching
Advanced monitoring
Routine maintenance

Built-in best practices

Many data-driven applications consist of a mix of workloads—each of
which has its own unique database requirements that needs both
relational and purpose-built databases. This is why easy access to a
portfolio of purpose-built databases is now a critical success factor for
data-driven applications.

aWws

\-/7 6

Making best-fit database choices

$579.99

Add to Cart e
e apavts recomimend

- 0

@ search: Index-optimized store
e Customer reviews: Key-value database

9 Shopping cart: Relational database

@ Recommendations: Graph database

As an example, an e-commerce shopping application uses an index-
optimized store like Amazon OpenSearch Service to help users quickly
find relevant information. Then, it uses a key-value database like
Amazon DynamoDB for showing customer feedback that uses a five-star
rating system. The purchase button uses a relational database, such as
Amazon Aurora, to ensure transactional integrity for both inventory and
financial accounting. Then, it uses a graph database like Amazon Neptune
to power personalization algorithms, such as recommendations on what
additional items the end customer might want to buy based on their past
purchases. Data-driven applications are built using an array of different
technologies, all simultaneously within the same application, to provide
the performance and scale that the end users are seeking.

AWS offers 15+ database engines, each built to uniquely address specific
customer needs. In addition to relational databases, the AWS database
portfolio includes a full range of purpose-built databases including
key-value, document, graph, in-memory, search, wide-column,

and time-series.

Broadest and deepest set of relational and purpose-built databases

Relational Purpose-Built

Key-Value

+

* Amazon > Amazon
¢ Aurora : DynamoDB

Memory

R V| - E

< g Amazon @ Amazon
RDS MemoryDB

¥ o N Y

Caching Document Graph

(oo Amazon Amazon Amazon
g ElastiCache] DocumentDB %Neptune
Wide-Column Time-Series

* Amazon Amazon
E
EC Keyspaces b8 Timestream

https://aws.amazon.com/opensearch-service/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/neptune/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/dynamodb/?nc2=h_ql_prod_db_ddb
https://aws.amazon.com/documentdb/
https://aws.amazon.com/neptune/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/opensearch-service/
https://aws.amazon.com/keyspaces/
https://aws.amazon.com/timestream/

Making best-fit database choices

Automated capacity changes
with serverless databases

Many data-driven applications have workloads with variable demands,
which makes changing database capacity a frequent occurrence.
Operating at the highest efficiency levels becomes a major challenge
when capacity requirements can vary based on time of day, time of year,
promotional events, and other factors, resulting in a complex multi-
dimensional decision matrix of when to scale each capacity dimension.

If the capacity is set too low, then databases can't keep up and end
users feel application performance issues. If the capacity is set to meet
peak demands, then the excess capacity is wasted during non-peak
time intervals, incurring unnecessary expense. Manual scaling burdens
IT operations teams with a series of detailed tasks to minimize system
outages, taking up valuable time and distracting from other higher
value activities such as schema design and application development.
In most cases, manual scaling is not seamless and it involves some
business disruption.

Over the years, our customers have adopted serverless architectures for

a range of use cases, such as event processing, internet-scale applications,
multi-tenant software-as-a-service (SaaS) applications, new applications
with unknown capacity requirements, and more. With AWS serverless
databases, your database automatically scales to match the workload
demand 24/7.

With AWS Databases, serverless is implemented as automated vertical
scaling or as an endpoint with zero infrastructure management.

The available options for automated vertical scaling include Amazon
Aurora, Amazon Neptune, and Amazon Timestream for LiveAnalytics.
In contrast, single endpoint implementation for serverless provides
automated vertical and horizontal scaling for both compute and storage,
and is available for Amazon Aurora DSOL, Amazon DynamoDB,
Amazon ElastiCache, and Amazon Keyspaces. Regardless of
implementation, billing is based on usage and results in up to

90 percent cost savings when compared to provisioning for peak
capacity. Under the hood, AWS uses multiple techniques for
automatically changing the capacity of serverless databases.

aWws

\-/7

https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/neptune/serverless/
https://aws.amazon.com/timestream/
https://aws.amazon.com/rds/aurora/dsql/
https://www.serverless.com/guides/dynamodb
https://aws.amazon.com/elasticache/features/#Serverless
https://docs.aws.amazon.com/keyspaces/latest/devguide/serverless_resource_management.html

Making best-fit database choices

Vertical Scaling
Increase size of instance
(RAM, CPU, etc.)

Hle Hi® e H.

Horizontal Scaling
Add more instances

Vertical scaling

With vertical scaling, you get intelligent, automated capacity
management. The virtual machine resources underpinning your
database instance dynamically scale up or down. Memory, central
processing unit (CPU), and network capacity grow when scaling up,

and reduce when scaling down. This occurs in real-time while the
database is operating, without disrupting the workload. These databases
continuously monitor resource utilization, scaling seamlessly even with
thousands of active connections, making it ideal for applications with
variable workloads. This ensures optimal performance during peak
times and cost-efficiency during idle periods.

Horizontal scaling

Horizontal scaling involves the distribution of the database workload
across multiple infrastructure resources to improve performance and
capacity. Common techniques include data partitioning, adding nodes
to increase cluster capacity, and sharding data across nodes, each of
which is discussed below.

1 I

HI| €

HI| €
HI| €
HI| €
HI| €
HI| €

HI| &
HI| &

HI| €

HI €
HI €

HI €

HI®| | HI®
HI®| | HI®
HI® | HI®
HI® | HI®
HID | HI®
‘Hi® Y HI®| ¢ Hi®

aWws

\-/7

BMW
Case study: BMW GROUP

BMW adopted Amazon Aurora Serverless v2 to handle unpredictable demand and reduce database costs.
Previously, workloads were run at maximum capacity to manage spikes, resulting in resource waste.
With Aurora Serverless v2, BMW now scales automatically to meet demand, minimizing costs and operational effort.

“We noticed a disproportionate increase in demand for scalability,” says Marc Fiedler, product owner for BMW Messages.
“By taking a serverless approach on AWS, we've achieved flexible scaling and cost reductions.”

Migrating to Aurora PostgreSQL-Compatible Edition allowed BMW to reassign 12 operations team members to focus
on product innovation. Automated scaling and zero-downtime patching have eliminated disruptions and downtime,
ensuring seamless customer interactions.

BMW also unified its global architecture of 1,300 microservices, which process over 12 billion daily requests,
by standardizing on Aurora Serverless v2. In just six months, BMW rearchitected systems across its hubs to enhance
scalability and connectivity.

Read the full story -

“We've moved away from physical il el
server limitations and now scale
worry-free in the cloud with
Aurora Serverless.

With AWS, we're building a

serverless future to optimize
costs and reliability.”

Marc Fiedler
Product Owner for BMW Messages,
BMW Group

https://aws.amazon.com/solutions/case-studies/bmw-group-aurora-serverless-case-study/
https://aws.amazon.com/solutions/case-studies/bmw-group-aurora-serverless-case-study/

Making best-fit database choices

Data partitioning

Data partitioning breaks down database tables into subsets (partitions)
of data based on values in one or more table columns, and can even
allocate each subset to a different storage device on the same machine.
This reduces contention for data on a single storage device and for other
reasons such as portability, reducing size of index strictures, and more.
Partition management occurs automatically in the background and is
transparent to your applications. Unlike sharding (see discussion below),
partitioning does not require partitions to reside on different database
nodes/instances.

For example, Amazon Aurora DSQL offers built-in support for various
approaches to partitioning. With range partitioning, a table is partitioned
into “ranges” defined by a key column or set of columns. With list
partitioning, the table is partitioned by explicitly listing which key value(s)
appear in each partition. Hash partitioning applies a hash function to a
key. The result of the hash function determines which partition the data
will be stored in.

aws
p S

1

Making best-fit database choices

Adding nodes to a cluster

Database capacity and performance can be increased by scaling out a
database cluster with additional nodes. There are multiple techniques
for distributing data and workload across the nodes. You can segment
the data across the nodes—a practice known as sharding, covered in the
next section. Alternatively, you can replicate the entire data set across
multiple nodes.

Only AWS instance-based databases support horizontal scaling by
creating read replicas for accelerating read performance. AWS Databases
like Aurora DSQL, DynamoDB, ElastiCache, and Keyspaces are fully
distributed systems, scaling both compute and storage horizontally
based on demand.

DynamoDB maintains multiple copies of your data in a single Region,

and applications read and write to a Regional endpoint. With DynamoDB
global tables, data is further replicated to other Regions, and applications
in multiple Regions can read and write to their respective Regional
endpoints. DynamoDB can be configured for either eventual or

strong consistency.

Aurora DSQL is a fully serverless distributed SQL database with
automated scaling whether your application is running in a single or
multiple Regions. Aurora DSQL is ideal for new applications, offering

a serverless endpoint that eliminates the need for infrastructure
management. Under the hood, Aurora DSQL maintains multiple copies
of your data set within a Region and across multiple Regions depending
on the cluster deployment (see Meeting users where they are with
global deployments).

12

o
RAFT
Case study: DraftKings '"!l)(INGS

DraftKings offers online sports betting services, daily fantasy sports contests, and iGaming solutions. During events like
the Super Bowl, DraftKings experiences massive traffic spikes, as users update bets and check balances simultaneously.
To handle these surges with low latency and high reliability, DraftKings chose Amazon Aurora, a high-performance,
scalable database service with MySQL compatibility. DraftKings uses Aurora MySQL-Compatible Edition to power its
financial ledger, which tracks balances and processes transactions for over 3.1 million monthly users. Aurora’s ability to
provision read replicas rapidly and its 18x input/output performance improvement compared to traditional databases
allowed DraftKings to scale efficiently during high-demand periods. For example, during the 2024 Super Bowl, Aurora
maintained throughput and latency metrics, handling traffic peaks 50 percent higher than the season opener. Aurora
read replicas distributed read traffic, ensuring fast, seamless user interactions. Key features like database cloning and 1/0O
optimization supported rapid testing, efficient reads/writes, and high availability.

AWS also offers programs and services, ranging from AWS Professional Services that taps into the deep expertise of
tenured professionals for migration assistance to Database Migration Accelerator (DMA), where for a fixed fee, a team of
AWS professionals handles the conversion of both the database and application for you. Database Freedom provides expert
advice and migration assistance to qualified customers. Additionally, AWS DMS Partners have knowledge, expertise, and
experience with migrations.

Read the full story <

Today, Aurora enables DraftKings
to process 1 million operations
per minute with read latency
under 1 millisecond and write
latency averaging 6 milliseconds.

As DraftKings expands to
new markets, it continues to
rely on Aurora’s performance
and scalability to deliver an
exceptional user experience
during peak events.

dWs

S 13

https://aws.amazon.com/professional-services/
https://aws.amazon.com/solutions/databasemigrations/database-migration-accelerator/
https://aws.amazon.com/solutions/databasemigrations/database-freedom/
https://aws.amazon.com/dms/partners/
https://aws.amazon.com/solutions/case-studies/draftkings-aurora-case-study/
https://aws.amazon.com/solutions/case-studies/draftkings-aurora-case-study/

Making best-fit database choices

Adding nodes to a cluster with sharding

Sharding takes the concept of partitioning, discussed earlier, and adds an
additional step by mapping each partition to a separate node in a cluster
of compute instances. Performance is optimized by hosting each partition
in a physically separated database node in a cluster. The capacity of each
instance is dedicated to processing the subset of data hosted by the node.
All database shards usually have the same type of hardware, database
engine, and data structure to generate a similar level of performance.
However, they have no knowledge of each other, similar to a shared-
nothing architecture.

It can be difficult to break up a relational data model into slices of

data to be spread across multiple virtual machines. In traditional
implementations, the user would implement the data mapping and
routing logic themselves, which can be complex to operate and error-
prone. With the large number of tables typical of relational databases,
extreme care must be taken to ensure that each shard has the same key
ranges that are needed for joining tables locally.

However, with Amazon Aurora PostgreSQL Limitless Database, you have
fully managed sharding and can operate sharded data sets without

the overhead of manual shard management and query routing. Aurora
PostgreSQL Limitless Database offers automated horizontal scaling for
millions of write transactions commits per second, and automatically
rebalances the data in a cluster when shards are added or removed.

It takes advantage of built-in data mapping and routing logic to send
requests to the appropriate shards, removing the operational complexity
with sharding while the application is running.

Since each shard handles an independent subset of data, the overall
capacity of a cluster is a function of the number of shards. Adding
capacity is simply a matter of adding shards. Sharding increases the
overall capacity of a cluster into petabytes of data in a single database.
It is effective in online transaction processing (OLTP) environments as
long as the transactions are relatively small and can be bounded on data
ranges that can be located on the same shard. Each shard only handles
a subset of the write requests, increasing the overall write requests a
cluster can handle.

aWws

\-/7

14

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/limitless.html

Case study: Careem vareem

Careem serves over 50 million customers across 10 countries. As its everything app services expanded to include ride-
hailing, food delivery, and money transfers, Careem faced challenges with its monolithic database infrastructure, leading
to high latency and frequent downtime. To address these issues, Careem adopted Amazon Web Services (AWS) to transition
to a microservices architecture.

The company migrated its MySQL-based system to Amazon DynamoDB, a serverless NoSQL database offering single-digit
millisecond performance, to handle driver location data. Careem also optimized costs, lowering expenses from thousands
to $1,600 per month by adopting a schema-free design and improved table management.

Additionally, Careem uses Amazon Relational Database Service (RDS) for other workloads, enabling efficient scaling and
high availability across its microservices. The transition improved app reliability and deployment flexibility, allowing
Careem to expand its services while enhancing performance.

With support from AWS, Careem continues to innovate, with security tools like Amazon GuardDuty and complying
with regional data regulations. “Using AWS enables us to have access to innovative technology solutions,” says Naorus
Abdulghani, VP of Engineering at Careem.

Read the full story -

“We're getting locations
from millions of drivers e
every few seconds.

ey

i

We needed a scalable solution
for so much data, and Amazon

Groceries

DynamoDB was just about
perfect.” . f @@=

. \——.i 1

Khurram Naseem DineOut Laundry
Senior Director of Engineering, Careem P

(@ wholly owned subsidiary of Uber) - 1 2

. + A

Rental Wellness

https://aws.amazon.com/solutions/case-studies/careem-dynamodb-case-study/
https://aws.amazon.com/solutions/case-studies/careem-dynamodb-case-study/

Making best-fit database choices

In-memory benefits of low-latency,
high-throughput data access

In-memory caches and databases provide a good solution for use cases
that require microsecond data access. Many applications use a cache

to improve both the performance of the application and the database.
Moreover, using a cache with a database is considered a best practice for
microservices-based architecture to offset network latency. AWS offers
two options for in-memory data access: Amazon ElastiCache (Valkey-,
Memcached-, and Redis OSS-compatible) and Amazon MemoryDB
(Valkey- and Redis OSS-compatible). Valkey is a drop-in replacement
for Redis OSS (Redis removed BSD 3-Clause License in March 2024)
stewarded by the Linux Foundation.

For read performance, both ElastiCache and MemoryDB provide
microsecond latency and throughput improvements over disk storage.
ElastiCache can process one million requests per second per node and
500 million requests per second for a cluster. The difference between
ElastiCache and MemoryDB has to do with durability. ElastiCache is a
cache, otherwise known as a non-durable or semi-durable data store.
MemoryDB is a fully durable, in-memory database. Like other caches,
ElastiCache does write to disk but the copy of the data on disk may lag.
As such, it's susceptible to data loss in the event of a cache failure.

The high availability feature in ElastiCache mitigates this exposure
considerably. If the primary instance of ElastiCache fails, a replica node
that becomes the new primary has most of the data from the failed
primary. Only the data that was not yet replicated from the failed
primary is lost.

If any amount of data loss is not acceptable, then MemoryDB is a better
fit. MemoryDB is an in-memory database with in-memory performance.
When data is written to MemoryDB, it is synchronously written to a
durable Multi-AZ transaction log before MemoryDB acknowledges the
write. These synchronous writes are slower than the write performance
of ElastiCache, which writes in microseconds, whereas MemoryDB can
take a few milliseconds.

aws
p S

16

https://aws.amazon.com/memorydb/

02 Maintaining
operational stability

adWs
>

Maintaining operational stability

Security and compliance

AWS maintains the highest standards in security, governance, and
compliance. Data in your databases can be encrypted at rest and in
transit. You use AWS Key Management Service (AWS KMS) to create
and control keys used to encrypt or digitally sign your data. AWS
databases also support secure connections via Transport Layer
Security (TLS) protocol.

AWS ldentity Services help you securely manage identities, resources,

and permissions at scale.

Amazon GuardDuty is an advanced threat detection service that uses
machine learning to continuously monitor your AWS accounts and
workloads for malicious activity. It provides detailed security findings,
enabling enhanced visibility and effective remediation. With GuardDuty,
you can quickly identify potential security misconfigurations, detect
threats, and address unexpected behaviors, allowing you to respond
swiftly to unauthorized or malicious activities in your environment.

AWS complies with all major regulations, including PCI DSS,
HIPAA/HITECH, FedRAMP, GDPR, FIPS 140-2, and NIST 800-171.

aws
p S

18

https://aws.amazon.com/products/security/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/compliance/services-in-scope/

Maintaining operational stability

High availability

Modern organizations regard high availability of their IT infrastructure as
a critical requirement. Increasing levels of digital transformations create
a mission-critical dependence on the availability of IT. AWS Databases
are protected by fault isolation boundaries that limit the blast radius

of a failure to a limited number of components. Database clusters are
deployed across multiple Availability Zones (AZs). An AZ is a logical
collection of data centers in a single Region designed to be fault tolerant
and highly available. AZs are isolated from each other. Data redundancy
is maintained by storing copies of your data in multiple AZs.

Implementations vary, but all AWS databases are designed for high
availability and resilience. Amazon Aurora and Amazon DynamoDB
serve as good examples. Amazon Aurora supports Multi-AZ DB cluster
deployments with readers deployed in different AZs. Aurora makes
your data durable across three AZs, but only charges for one copy. It
automatically fails over to a reader in the event of a writer database
instance failure, or an entire AZ failure. DynamoDB automatically
partitions, stores, and synchronously replicates data across three AZs
within a region in a multi-active configuration that does not require
failover in the event of a writer or AZ failure. Each database in the AWS
database portfolio provides similar mechanisms for high availability.

Aurora DSQL, DynamoDB, Keyspaces, and MemoryDB provide up to
99.999% availability. RDS, ElastiCache, DocumentDB, and Timestream
offer up to 99.99% availability.

aWws

\-/7

19

Maintaining operational stability

Blue/green deployments

Some changes, like major version upgrades and schema changes, are under
your control and subject to your timing requirements. These changes need
to provide mechanisms for testing version upgrades and ensuring their
quality. One such mechanism is blue/green deployments. This approach
can be applied to databases as part of making changes to production.

In the current atmosphere of 24/7 operations, downtime for major version
upgrades, schema changes, or data loss due to failed attempts at updates
is not acceptable.

Amazon RDS Blue/Green Deployments—available for both Amazon

RDS and Amazon Aurora—provide a simpler, safer, faster, and secure

way to make these changes. In this DevOps technique, the production
environment is the blue environment and the staging environment is the
green environment. Typically, organizations test new versions of software
in a green environment under a production load, before putting it in
production. But this requires advanced operational knowledge, careful
planning, and time. With Amazon RDS Blue/Green Deployments, AWS
provides a fully managed staging environment. When an upgrade is
deemed to be ready, the switchover can occur in less than a minute with

zero data loss.

In addition, Amazon RDS Multi-AZ deployments with two readable

standbys now support minor version upgrades and system maintenance
updates with typically less than one second of downtime when using
Amazon RDS Proxy, which can also be used with Amazon Aurora. This
capability allows you to take advantage of the most recent performance
improvements, bug fixes, and any new security fixes or patches from the
latest minor versions of PostgreSQL and MySQL with minimal interruption
to your application.

dWs

U

20

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments.html
https://aws.amazon.com/rds/features/multi-az/
https://aws.amazon.com/rds/features/multi-az/
https://aws.amazon.com/rds/proxy/

03 Meeting users where
they are with multi-
Region deployments

aWs
>

Meeting users where they are
with multi-Region deployments

Users expect local response time from their databases, rather than being
subjected to network latency. Multi-Region data distribution can locate
data near users, so that they experience local response time. It also
provides an alternate source of data in the event application processing
is interrupted in one Region.

There are three approaches to multi-Region data distribution, with each
one presenting a different set of benefits: (1) maintaining local copies of
data for faster read response time, (2) using active-active data replication
for improving the response time of both reads and writes, and (3) using
active-active data replication with strong consistency for always-available
applications.

Multi-Region read replicas

Beyond Multi-AZ read replicas, the AWS operational databases that
support multi-Region distributed read replicas are Amazon RDS, Amazon
Aurora Global Database, Amazon DocumentDB, and Amazon Neptune.
Multi-Region read replicas eliminate the need for a long network hop for
retrieving data. Changes to data in the primary region are continuously
and asynchronously replicated to secondary regions.

Active-active multi-Region databases with
eventual consistency

Active-active means that you can read and write to any Regional endpoint
at the same time. An active-active, multi-Region database with eventual
consistency means each local copy of data is eventually consistent with
the Region where the data was initially written. This technique is used to
scale writes across Regions. Unlike sharding, this architecture maintains
active-active data replication of the entire dataset, and replication usually
occurs within one second.

22

Meeting users where they are
with multi-Region deployments

Amazon DynamoDB global tables is a multi-active, multi-Region
database—every Region's replica is active, so you can write to it and

read from it at the same time. The local instance of an application
communicates with the local replica, resulting in single-digit-millisecond
latency. The data that is written to a local instance is asynchronously
replicated across all Regions selected for a global table (the data is not
sharded). It is easy to convert a table to a global table and add or remove
regions from a global table. Data is secure as it is encrypted in transit and
at rest. This approach opens up the possibility of update conflicts, which
are resolved by using the “last writer wins” technique.

Amazon MemoryDB Multi-Region is an active-active, multi-Region
database suited for customers who need microsecond reads and up to
99.999% availability. It uses asynchronous replication across multiple
Regions, preserving in-memory performance.

Amazon Keyspaces also has an active-active multi-Region database ideal
for customers who need an Apache Cassandra—compatible database
service with up to 99.999% availability.

Since the data in each Region is eventually consistent with the data in
the Region where it was initially written, an application that is unable to
reach its local endpoint can access the data from an alternate Region.
An eventually consistent approach opens up the possibility of data

loss because of ‘in flight' changes that may not have been successfully
replicated before the failover. If your workload cannot tolerate any

data loss at all, you need a database that offers strong consistency
across Regions.

aWws

\/7

23

https://aws.amazon.com/dynamodb/global-tables/
https://aws.amazon.com/memorydb/features/
https://aws.amazon.com/keyspaces/multi-region-replication/

Meeting users where they are
with multi-Region deployments

Active-active multi-Region databases with
strong consistency

Active-active multi-Region databases with strong consistency guarantee
the application is always reading the most up-to-date and consistent
view of the data regardless of the Region they are located in. All
transactions written in one Region are reflected in other Regions with
strong consistency, which eliminates issues caused by data conflicts or
divergence across Regions. Amazon Aurora DSQL and Amazon DynamoDB
global tables are both examples of databases that offer strong
consistency across Regions.

Amazon Aurora DSQL is a serverless distributed SQL database with the
fastest reads and writes among distributed SQL databases, virtually
unlimited scale, zero infrastructure management, and highest availability
for always-available applications. Its high writes throughput is critical

for a broad range of write heavy applications like internet-scale
ecommerce business applications that need to accurately process peak
order transactions. For reads, DSQL is designed to allow fast, strongly
consistent reads with no latency penalty from data synchronization
across Regions.

Aurora DSQL is ideal for customers who are building multi-Region
distributed applications that can support millions of end users worldwide
with effortless scaling. Data-driven applications, including SaaS
applications, will benefit from the serverless, distributed architecture

as it efficiently scales with microservices and serverless design patterns.
Aurora DSQL automatically scales to meet any workload demand without
database sharding or instance upgrades. It eliminates scaling bottlenecks
while maintaining performance, offering virtually unlimited horizontal
scaling. You also have flexibility to scale reads and writes independently.

aWws

\/7

24

Meeting users where they are
with multi-Region deployments

With Aurora DSQL, there is no need to provision, patch, or manage
database instances, and all updates and security patching happen

with no downtime and zero impact to performance. It is designed for
99.99% single-Region and 99.999% multi-Region availability with no
single point of failure and automated failure recovery. Applications are
always-available as Aurora DSQL allows applications to read and write
to the same DSQL cluster from any regional endpoint with strong data
consistency in and across multiple Regions. There is no need to build
custom application logic and manual database failover procedures,
including managing the complex task of ensuring data consistency and
data recovery during failover operations. There is no need to account for
missing data during failure recovery due to replication lag or inconsistent
database recovery logs. If you need to cut over your applications to an
alternate Region, they will always access the most recent data.

For NoSQL customers, Amazon DynamoDB global tables now offers
multi-Region strong consistency, offering customers the flexibility to
choose strongly consistent reads for their applications across multiple
Regions. If your application processing is interrupted in one Region,
there is no need for a database failover as global tables multi-active
architecture allows customers to read and write to any replica table.
Global tables also eliminate the difficult work of replicating data between
Regions and resolving update conflicts for multi-Region workloads. Its
multi-Region strong consistency synchronously writes data to at least
two replica tables, ensuring customers' data is persisted across two
Regions before it is read by the application, and customers can route
their application traffic to a different Region and be assured that their
application is reading the latest data. When customers choose multi-
region strong consistency, they also obtain the highest availability,
virtually unlimited scalability, and zero infrastructure management
already available in DynamoDB global tables.

aWws

\/7

25

04

adWs
>

Performing analytics
and search on
operational data
with zero-ETL

Performing analytics and search
on operational data with zero-ETL

Databases that are optimized for operational workloads are usually not
the optimal choice for use cases like analytics and search. Operational
databases are optimized for processing transactions, updating records,
and managing real-time business operations.

Performing analytics or search on operational data often requires the
process of moving data from data stores optimized for operational
workloads to those optimized for analytics or search. Traditionally,
this task is managed through an extract, transform, and load (ETL)
process, where data engineers build, test, and maintain pipelines.

The challenges with ETL

ETL presents considerable challenges. First, developers have to design an
ETL pipeline architecture. They have to decide where to extract the data
from—often it comes from multiple sources. Then, they have to write
code to transform the data to remove duplicates, filter outliers, retrieve
missing data, and identify corrupted data. And after all that, they have
to load their transformed data to its new destination, which typically
requires more custom coding. If something changes, like a change to a
table name or a new field, then all the custom code must be updated and
redeployed. ETL pipelines are complex, brittle, inflexible, and subject to
scalability limits.

The time needed to create or modify data pipelines makes ETL unsuitable
for near real-time applications, such as those detecting fraudulent
transactions, optimizing online advertisements, or tracking supply chains.
This creates significant barriers to achieving business objectives, such as
exploring new opportunities or reducing risks. Also, the data movement
lag associated with ETL carries a negative impact, particularly when
insights gleaned from analytics of transactional data have relevance

for only a limited time frame.

aWws

\/7

27

Performing analytics and search
on operational data with zero-ETL

+

=5

Amazon
Aurora

=

Amazon
Dynamo DB

AWS zero-ETL integrations

Zero-ETL integrations are no-code integrations between data services
so you can gain insights from your data faster. It lets you make your
application data available for analytics, search, and Al use cases in
near real time with just a few clicks.

y @ ¢ nrl
J Y [l Lo s
Amazon Amazon Amazon RDS Amazon Amazon
Redshift Glue S3 SageMaker OpenSearch
Lakehouse Service
- R A
&> AP .
/4 N O salesforce pardot
Amazon Amazon RDS [ro—
Document DB for MYSQL
n "rI 6\3
V4 ?
[llg Q servicenow ‘A m .
zoho
Amazon Amazon zendesk REDLAKE
OpenSearch Cloudwatch

Service

dWsS

\-/‘7

28

Performing analytics and search
on operational data with zero-ETL

Zero-ETL integrations open up near real-time analytics and search use
cases on petabytes of operational data without the customer having
to maintain data pipelines. You can use these zero-ETL features to
consolidate data from multiple instances of the source database into
a single Amazon Redshift data warehouse to derive holistic insights

across several applications, while also consolidating your core analytics
assets and gaining significant cost savings and operational efficiencies.
Customers can access the core capabilities of Amazon Redshift, such

as materialized views, data sharing, and federated access to multiple
data stores and data lakes. Zero-ETL integration with Amazon Redshift
enables customers to combine near real-time and core analytics to
effectively derive time-sensitive insights that inform business decisions.
Similarly, multiple instances of the source database can be consolidated
into OpenSearch Service, providing a holistic search experience across

several applications.

aWws

\-/7

29

https://aws.amazon.com/redshift/
https://aws.amazon.com/opensearch-service/

05 Unlocking vector
search for generative
Al applications

aWws
>

Unlocking vector search
for generative Al applications

Generative Al holds the promise of ushering in a new wave of innovative
applications, and these applications rely on foundation models (FMs) or
large language models (LLMs). FMs are trained on vast datasets, such as
all the content accessible on the internet, but they need to be augmented
with domain-specific data to produce accurate and relevant results for
that domain. FMs can return inaccurate responses because: 1) they have

a knowledge cut-off date and can't accurately respond to questions
referring to events more recent than the cut-off date and 2) they try to
respond to a question requiring domain specific knowledge that wasn't
part of the training data set. In both cases, prompt instructions that are
not correctly optimized may force the model to provide a response even if
the model lacks context to answer the question. Augmenting generative
Al applications for domain-specific accuracy is crucial for organizations
looking to build domain-specific generative Al applications.

aWws

Unlocking vector search

for generative Al applications

Insurance
regulations

Collision coverage

Policy premium

.
{ oss o7 O o:s]

Adding domain-specific data using databases

One approach to adding domain specificity to generative Al applications
relies on encoding domain-specific data into n-dimensional vectors.

In generative Al, a vector is a data type that provides a mathematical
representation of its source content, such as text, images, video, audio,
or other structured or unstructured data types. Vectors are generated
using embedding models, which are specialized machine learning
models that capture the semantic meaning of their source data. This
transformation provides a way to compare the relationships between the
data through “distance functions” that determine the similarity between
two vectors. For example, an embedding model may generate vectors
that show “auto insurance” is more similar in meaning to “car insurance”
than it is to “collision coverage.”

e Auto insurance

® Policy premium e Car insurance

e Collision coverage
e Fire zone e Uninsured motorist
e Personal property
e Umbrella policy

e Dwelling coverage

2-Dimensional vector space (simplification)

Unlocking vector search

for generative Al applications

Retrieval Augmented Generation to enhance
contextual relevance

Vector similarity search is often used when building applications that
leverage retrieval-augmented generation, or RAG. RAG is a technique
that lets you bring in more context to a foundation model (FM), such

as information about a specific situation or facts that weren't available
when the FM was trained. For example, when a generative Al app user
asks a question, the question is routed to an embedding model, and the
application uses that embedding to perform a vector similarity search

to determine if it needs to supply additional context to the FM to answer
the question.

There are two workflows in RAG: ingestion and agency. The ingestion
workflow is where source data (such as, text, images, video) are
transformed into vectors through an embedding model. As part of this
transformation, it may be necessary to break up the data into smaller
“chunks” due to the size of the “context windows" that a specific model
can process. The generated vectors are then stored in a database for
retrieval during the agency phase. During the agency phase a user
submits a request that may require additional context. This requires
running a similarity search over vectors, which can be handled through
brute-force search (searching over every vector in a dataset) or through
“approximate nearest neighbor” (ANN) search that searches over a subset
of data to make a “best guess” at the most similar results. Examples of
ANN algorithms used in databases include Hierarchical Navigable Small
World (HNSW), and Inverted Files with Flat Compression (IVFFlat).

AWS databases that support vectors as a data type offer rapid lookup
capabilities, along with core database features like scalability, availability,
and security. The outcome of vector searches typically yields a ranked list
of vectors with the highest similarity scores to the vector that represents
the prompt, along with the original source data (the chunk).

aws
p S

33

Unlocking vector search

for generative Al applications

Knowledge bases for Amazon Bedrock

For automated RAG, Knowledge Bases for Amazon Bedrock is a great
option. It automates the RAG workflow, including both the ingestion
workflow (fetching documents, chunking, creating embeddings, and
storing them in a vector-enabled database) and the runtime orchestration
(creating embeddings for the end-user’s query, finding relevant chunks
from the vector database, and passing them to an FM).

GraphRAG is a technique that uses a knowledge graph during the
retrieval part of the RAG process. Based on Amazon Neptune, GraphRAG
automatically generates graphs that link data across multiple sources,
including unstructured data like text, images, video, and audio.

This is quite remarkable as over 80 percent of organizations’ data

is unstructured data. During the retrieval process, GraphRAG will
automatically traverse these graphs to provide more comprehensive,
accurate, and explainable responses from LLMs—all with a single API call.
You can select the unstructured data stored in Amazon S3 and Amazon
Neptune to automatically create a graph (powered by Amazon Neptune)
that can be used during retrieval as part of the RAG process. With
Bedrock Knowledge Bases, interoperability between Amazon Bedrock,
Amazon Neptune, and Amazon S3 is built in to provide you an automated
workflow for GraphRAG.

The Knowledge Bases setup process involves key decisions around the
specific FM and the integrated database to use for the knowledge base.
A number of database options are available. For example, you can choose
Aurora, OpenSearch Serverless, or Neptune within the Amazon Bedrock
console, and Amazon Bedrock will automatically store your vectors in

the database of your choice and pull vectors to augment queries with
contextually relevant data in support of RAG. All three databases have

a quick create setup making it easy to get started.

aws
p S

34

https://aws.amazon.com/bedrock/knowledge-bases/
https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base-build-graphs.html

Unlocking vector search

for generative Al applications

Storing vectors alongside
your application data
reduces the need for
data processing pipelines
or complex application
logic to combine data
across different systems,
and reduces overhead
and licensing costs.

Many use cases, including natural language processing, rely on databases
with vector capabilities for their applications. These use cases necessitate
both semantic understanding and precise data matching. Vector storage
and similarity search are vital for addressing the limitations of LLMs
related to relevance and accuracy in a particular data domain.

Vector search can also add more current information that is absent from
LLMs, giving LLMs an external memory. LLMs are updated infrequently
because of the high computational cost of retraining them on new data.
Vector embeddings, on the other hand, can be updated more frequently
as new data is added or existing data is updated. Subsequently, the
updated vector embeddings can be discovered through vector similarity
searches and can become part of the up-to-date context that is sent to
LMMs along with the end-user’s queries.

Storing vectors and operational data together

Vectors are a data type that is supported across many databases that
customers currently use. This eliminates the need to migrate data to

a specialized vector database while enabling you to take advantage of
vector database capabilities within existing architectures. AWS databases
with vector database capabilities allow the storage of vast amounts of
vectors, perform vector searches without data movement, and implement
RAG use cases. This integration allows for access to both your source
data and vector embeddings (generated from your source data) from the
same place. You will also benefit from the advantages of a fully managed
database, including cost savings and the elimination of undifferentiated
heavy lifting.

In contrast, standalone or specialized vector-enabled databases
necessitate data migration. Furthermore, the need to integrate an
additional database with your applications leads to significant changes
in your existing applications. Opting for a separate specialized database
creates challenges related to redundant data, data consistency,
specialized skills, and additional licensing costs. On the other hand,
vector database capabilities embedded in familiar operational databases
significantly reduce operational burden.

aWws

\-/7

35

Unlocking vector search
for generative Al applications

AWS provides a range of databases with vector capabilities, including:

o Amazon Aurora PostgreSQL
« Amazon RDS for PostgreSQL

« Amazon DynamoDB (via zero-ETL integration
with Amazon OpenSearch Service)

 Amazon Neptune
 Amazon MemoryDB
 Amazon DocumentDB

« Amazon OpenSearch Service and Vector
Engine for OpenSearch Serverless

You can fully unlock the benefits of generative Al with your existing
database, avoiding the operational complexity of learning and
managing a new database. Plus, you gain access to database
performance, scalability, availability, and security tailored to

your application’s requirements.

aWws

\/7

06 Bridging Kubernetes
workloads to AWS
databases

aWws
>

Bridging Kubernetes
workloads to AWS databases

DevOps has become a popular approach with the promise of delivering
faster software development and deployment. However, DevOps is not
a one-size-fits-all approach; organizations have the flexibility to adopt
the practices, tools, and technologies that best suit their needs. Among
the technologies often embraced within DevOps is Kubernetes (K8s), a
container orchestration system. But how do the worlds of K8s and fully
managed database services on AWS come together? Fortunately, you
can manage AWS databases as external AWS managed resources directly
from K8s. The key cluster management actions are supported, like scaling
up, down, in, or out, and scaling the number of read replicas; as well as
creating other database resources such as snapshots, parameter groups,
and subnet groups. Managing AWS databases in a K8s world relies on
controllers that extend K8s. Controllers use the K8s APIs to control the
lifecycle of custom resources that are not built into K8s, like databases
and caches. By using a controller for an AWS database, the management
of the database can be automated, much like a native K8s resource.

AWS Controllers for Kubernetes (ACK) adopt the approach of managing
AWS databases as external resources. With ACK, you can take advantage
of AWS managed services for your K8s applications without needing to
define resources outside of the K8s cluster or run services that provide
supporting capabilities like databases, caches, or message queues within
the K8s cluster. Each ACK service controller manages resources for a
particular AWS service, and is packaged into a separate container image
that is published in a public repository.

Developers can use their knowledge of the K8s resource model to work
with AWS databases, just like any other K8s resource. ACK enables

K8s users to describe the desired state of AWS resources using the

K8s APl and configuration language. ACK resources are defined using
YAML-formatted manifest files to both initially define the resource
configuration and to modify it. After the manifest file is created, the
resource it defines is created by using the file name as the input argument
to the Kubernetes "kubectl apply” command. To change a resource
configuration, you simply edit the appropriate parameters in the existing
resource manifest file, then call the “kubectl apply” command in the
same manner as the initial resource creation. Manifest files can be version
controlled, alongside your application code, so that changes over time
are easily tracked and attributed to changes to application code.

aWws

https://kubernetes.io/docs/concepts/architecture/controller/
https://aws-controllers-k8s.github.io/community/docs/community/services/

Bridging Kubernetes
workloads to AWS databases

Also, ACK is declarative, so you can define the desired state and allow the
controller to take the necessary steps without defining an imperative list
of steps. The K8s control loop manages the state of your cluster as well
as the configuration you passed in for your AWS resource. Periodically,

an ACK service controller will look for any drift and attempt to remediate.
A single consolidated approach using ACK makes it easier to adopt GitOps
for automating your deployments.

ACK service controllers run in a container on any K8s distribution on
premises or in the cloud. Hence, they are not limited to Amazon Elastic
Kubernetes Service (Amazon EKS). Controllers are currently available for
RDS, Aurora, DynamoDB, ElastiCache, MemoryDB, Keyspaces, and more.

aWws

https://aws-controllers-k8s.github.io/community/docs/community/services/

07 Migrating your
data to AWS

aWs
>

Migrating your data to AWS

Migrating to the cloud is more important than ever so you can take
advantage of your data for generative Al and machine learning. We
realize you need a practical approach to migrating your existing
on-premises database to the same type of database in the cloud
(homogeneous migration) or switching to a different type of database
in the cloud (heterogeneous migration). Cloud-to-cloud database
migrations are another important evolutionary path.

AWS offers tools and experts to help assess, plan, and build the right
migration path for your company. The AWS Database Migration Service
(AWS DMS), which includes Schema Conversion with generative Al,
helps you migrate databases to AWS while maintaining uninterrupted
operations on the source database. DMS supports an extensive list of

sources and targets. This method is useful when you have to migrate

the database code objects—including views, stored procedures, and
functions—as part of the database migration, or have to convert between
different database engines or data models. This solution is applicable to
databases of any size. It keeps the database available for the application
during migration and allows you to perform validation of the migrated
data, while the data is getting replicated from source to target, thereby
saving time on data validation.

41

https://aws.amazon.com/dms/
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_SchemaConversion.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.html

S&P Dow Jones
Indices

Case study: S&P Dow Jones Indices ADiision of STPEEEA

S&P Dow Jones Indices is a division of S&P Global Inc., an American publicly traded corporation headquartered in New
York City. The organization provides solutions for tracking market performance, evaluating portfolios, and developing
investment strategies. Its indices number in the hundreds of thousands and span every major asset class, as well as markets
around the globe. S&P DJI faced the challenge of managing vast amounts of data while improving database performance.

To reduce maintenance time, S&P DJI re-platformed to Amazon Relational Database Service (Amazon RDS), gaining
benefits like business continuity and high availability. To enhance performance, S&P DJI migrated some on-premises
MySQL databases to Amazon Aurora MySQL-Compatible Edition and others to Aurora PostgreSQL-Compatible Edition.
S&P DJI also adopted Amazon Aurora Global Database and Aurora Serverless for scalability and efficiency, particularly for
applications involving machine learning and large-scale data ingestion. AWS Database Migration Service (AWS DMS) and
AWS Schema Conversion Tool (AWS SCT) enabled seamless migrations, cutting migration time to just 10 hours.

Read the full story <

“After migrating to Aurora, we
could increase the efficiency of
our operations, our quality of
service, and the speed and
performance of many of our
databases, and also cut down
our operational costs
significantly. This is just
a new beginning. We are
going to continue to use
many AWS services.”
Shivakumar Bangalore

Senior Director of Database Engineering,
S&P Global Inc.

dWs

\/‘7

https://aws.amazon.com/solutions/case-studies/sp-dow-jones-indices-case-study/
https://aws.amazon.com/solutions/case-studies/sp-dow-jones-indices-case-study/

08 Conclusion

aWws
>

Conclusion

The AWS database
portfolio is the result
of an ongoing, focused
investment strategy

to provide customers
with feature-rich and
cost-effective database
products.

Our commitment to
innovation is motivated
by our belief that our
innovation can clear the

path for your innovation.

Data-driven applications mark a shift in how applications are designed
and built. Unlike applications built on monolithic architectures, these
applications are based on distributed microservices-based architectures.
The decomposition of monoliths into microservices facilitates an
independent best-fit database choice for each microservice, and AWS
offers the right tool for the job. The workload-specific focus of each
database is key to how AWS can optimize each database for performance
at scale. In addition, each database is future-proofed with the seamless
addition of features that support emerging use cases like generative Al,
and ample headroom for growth in the number of users, the geographical
dispersion of users, and data capacity. As every AWS database is fully
managed, database operations, maintenance, and capacity adjustments
are automated and non-disruptive. AWS continues to invest in making the
maintenance of your databases effortless.

To get started, you can gain free hands-on experience with many of our
databases—check out AWS Free Tier. AWS also offers Optimization and

Licensing Assessment (OLA) to help you evaluate options to migrate

to the cloud. When you complete this form to request an assessment,
the AWS OLA team can help you. You can also learn more about AWS
databases by heading over to the database category page where you'll
find related content, additional documentation, and links to each of the
database service pages.

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

aWws

\-/7

44

https://aws.amazon.com/free/?all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%20Types=*all&awsf.Free%20Tier%20Categories=categories%23databases
https://aws.amazon.com/windows/optimization-and-licensing-assessment/
https://aws.amazon.com/windows/optimization-and-licensing-assessment/
https://pages.awscloud.com/windows-ola-contact-us.html
https://aws.amazon.com/products/databases/

	Key characteristics of data-driven applications
	Making best-fit database choices
	Vertical scaling
	Adding nodes to a cluster
	Adding nodes to a cluster with sharding
	Case study: Careem
	In-memory benefits of low-latency, high-throughput data access
	Maintaining operational stability
	Security and compliance
	High availability
	Blue/green deployments
	Multi-Region read replicas
	Active-active multi-Region databases with eventual consistency
	Active-active multi-Region databases withstrong consistency
	Performing analytics and search on operational data with zero-ETL
	The challenges with ETL
	Adding domain-specific data using databases
	Retrieval Augmented Generation to enhance contextual relevance
	Knowledge bases for Amazon Bedrock
	Storing vectors and operational data together
	Bridging Kubernetes workloads to AWS databases
	Migrating your datato AWS
	Case study: S&P Dow Jones Indices
	Conclusion

